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H. von Löhneysen1, A. Neubert1, T. Pietrus1, A. Schröder1, O. Stockert1, U. Tutsch1,
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Abstract. We report on extensive elastic neutron scattering to determine the wave vector of the magnetic
order in CeCu6−xAux single crystals for x > 0.1. For all values of x investigated (0.2, 0.3, 0.5, 1.0) we
find long-range incommensurate antiferromagnetic order with an ordering vector Q ≈ (0.625 0 0.275)
for x = 0.2, nearly unchanged for x = 0.3, and Q ≈ (0.59 0 0) for x = 0.5, staying roughly the same
for x = 1.0. In addition, short-range correlations are observed for x = 0.2, reminiscent of those found
previously for x = 0.1. The ordered magnetic moment is found to increase rapidly for small x, and more
slowly for the larger x values. The increase of the specific-heat anomaly at the ordering temperature with
x is in qualitative accord with this behavior. Finally, data of the electrical resistivity for current flow
along the three crystallographic directions are presented, showing a clear signature of the magnetic order.
A theoretical interpretation of the interplay of magnetic order and transport in terms of (i) the partial
suppression of the Kondo effect by the staggered magnetization and (ii) the anisotropic band structure
induced by the staggered field is shown to account well for the data, provided the ordering vector Q is
close to 2kF , where kF is a typical Fermi momentum.

PACS. 75.30.Mb Valence fluctuation, Kondo lattice, and heavy-fermion phenomena
– 75.25.+z Spin arrangements in magnetically ordered materials – 72.15.Eb Electrical and thermal
conduction in crystalline metals and alloys

1 Introduction

Heavy-fermion systems exhibit a fascinating interplay of
magnetically ordered and non-magnetic groundstates and
– in some systems – superconductivity [1]. It has been
known for a decade that the heavy-fermion compound
CeCu6 which does not show magnetic order down to tem-
peratures T of at least 5 mK [2,3] exhibits long-range an-
tiferromagnetic order when alloyed with Au or Ag [4,5].
From the beginning, this has been explained [6] as arising
from the interplay between onsite Kondo screening of the
Ce magnetic moments in a crystal-field split 2F5/2 dou-
blet groundstate [7] and the RKKY interaction between
Ce moments. The latter is favored by a weakening of the
Kondo screening with increasing interatomic spacing upon
alloying with Au. Indeed, the magnetic order can be sup-
pressed in CeCu6−xAux and a nonmagnetic groundstate
is recovered upon application of a sufficiently high hy-
drostatic pressure [6,8]. The Kondo temperature TK as
estimated from the specific heat in large magnetic fields
B = 6 T applied along the easy direction, decreases mono-
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tonically from TK = 6.2 K (x = 0) to 4.6 K (x = 0.5)
[9,10]. In line with this TK decrease, the onsite fluctua-
tion rate as measured with inelastic neutron scattering
Γ (T → 0) which is attributed to the Kondo effect, is
smaller by a factor of ∼ 2 in CeCu5.5Au0.5 than in pure
CeCu6 [7]. Between x = 0.1 and 1, the Néel temperature
TN rises from 0 to 2.3 K and decreases sharply beyond
x = 1. For x ≤ 1 Au occupies exclusively the Cu(2) po-
sition in the orthorhombic CeCu6 structure (Pnma) [11].
The change of dTN/dx at x = 1 coincides with a sub-
tle change within the orthorhombic structure: for x < 1
the lattice parameters a and c increase while b decreases
with growing Au content, whereas for x > 1 all three lat-
tice parameters a, b and c increase. (We neglect the small
monoclinic distortion (≈ 1.5◦) of CeCu6 occurring be-
low TS ≈ 200 K [12]. This structural transition vanishes
quickly with x, e.g. TS ≈ 70 K for x = 0.1 [13].) Long-
range antiferromagnetic order was previously directly ob-
served for x = 0.5, with incommensurate reflections along
the a∗ axis (we use the orthorhombic notation throughout)
indicating a magnetic ordering wave vector Q = (0.59 0 0)
[14]. At the critical concentration xc ≈ 0.1 for the appear-
ance of long-range antiferromagnetic order, pronounced
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Fig. 1. (a) and (b): Elastic scans in CeCu5.8Au0.2 along
(h 0 0) and (h 0 0.275) at temperatures T ≤ 50 mK well below
TN = 0.25 K on IN 14 with a neutron energy E = 2.7 meV. The
scans along the a∗ axis reveal broad quasi-elastic structures
indicating short-range correlations, while resolution-limited
peaks are found at (0.625 0 0.275) and equivalent positions.
(c): Elastic scan along (h 0 0) in CeCu5Au at T = 50 mK
(TN = 2.3 K) on E4 (E = 14 meV) showing resolution-limited
peaks with Q =(0.56 0 0).

deviations from Fermi-liquid behavior are observed in the
thermodynamic properties, i.e. specific heat and magneti-
zation, and in the electrical resistivity [11,15]. The critical
fluctuations associated with this quantum critical point
have recently been identified [16,17].

In this paper, we present a comprehensive study of
the long-range antiferromagnetism in CeCu6−xAux. We
will use elastic neutron scattering to characterize the
magnetic ordering wave vector for several concentrations
x = 0.2, 0.3, 0.5 and 1.0. The rough estimate of the or-
dered magnetic moment will be compared to that inferred
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Fig. 2. Position of the magnetic Bragg peaks (x = 0.2−1.0)
in the reciprocal ac plane in CeCu6−xAux (data for x = 0.5
taken from [14]). The open symbols for x = 0.2 represent the
short-range ordering peaks and the stripes indicate the dy-
namic correlations found for x = 0.1 [16].

from the specific-heat anomaly. Electrical resistivity mea-
surements along different directions reveal clear features
attributed to the magnetic order and represent an inde-
pendent source of information on the magnetic structure
below TN . We consider a phenomenological theory of the
transport of heavy quasiparticles in a disordered lattice,
which accounts well for the observed behavior. In fact,
the results allow to confirm the direction of the ordering
Q vector. In addition they appear to indicate that the
magnitude of Q is not too far from 2kF , where kF is a
typical Fermi momentum.

2 Experimental

All samples of this study were single crystals grown in
a W crucible with the Czochralski technique. The neu-
tron scattering experiments were performed at the Institut
Laue-Langevin Grenoble, instrument IN 14 (for x = 0.2)
and the Hahn-Meitner-Institut Berlin, instruments E4 and
V2 (x = 0.3, x = 1). The previous results for x = 0.5
(as well as preliminary results for x = 1) were obtained
at NIST Gaithersburg, instrument B9 [14]. The quasi-
adiabatic heat-pulse technique was used for the measure-
ment of the specific heat. The electrical resistivity ρ(T )
was measured on small rectangularly shaped bars cut from
the same crystals as used for the neutron scattering. The
standard four-probe technique was applied. Because of the
small sample size, the absolute ρ values are accurate only
within 20%.

3 Results

3.1 Neutron scattering

Although the present paper focuses on the magnetically
ordered CeCu6−xAux alloys, we should mention at the
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Fig. 3. Temperature dependence of the intensity of corresponding Bragg peaks normalized to the (2 0 0) nuclear re-
flection for x = 0.2 (Q =(0.625 0 0.275)) and x = 0.3 (Q =(0.62 0 0.253)) in (a) and for x = 0.5 (Q =
(0.59 0 0)) and x = 1.0 (Q =(0.56 0 0)) in (b). The intensity is proportional to the square of the staggered magnetization
MQ(T ).

outset that an important issue is to identify the nature of
the fluctuations responsible for the nonmagnetic to mag-
netic transition at the critical concentration xc = 0.1.
We recently identified two-dimensional short-range fluctu-
ations in the dynamical magnetic susceptibility for x = 0.1
from the observation of rod-like structures in the recipro-
cal ac plane [16] (cf. Fig. 2). These dynamic correlations
evolve for x = 0.2 into short-range and long-range or-
dering peaks, both are located along these rods. Figure 1
shows results of elastic scans across magnetic Bragg re-
flections taken at temperatures well below the ordering
temperature. For x = 0.2 we find the above mentioned
short-range magnetic order along the a∗ axis with a wave
vector Q = (0.79 0 0) (Fig. 1a). From the linewidth of
the peaks, ∆q = 0.06 r.l.u. (HWHM) in a∗, we deduce
a correlation length of about 2.7 unit cells in the a di-
rection which is somewhat smaller than the results previ-
ously reported [18] (there a factor of 1/(2π) was omitted).
This short-range-order feature along the a∗ axis was not
observed for the x = 0.3 alloy, probably due to a large
background compared to the expected magnetic intensity.

In addition, we observe resolution-limited reflections
for x = 0.2 in the a∗c∗ plane (Fig. 1b), indicating long-
range magnetic order with Q = (0.625 0 0.275). Only mi-
nor changes in the positions of the magnetic peaks are
found for x = 0.3 where Q = (0.62 0 0.253). In contrast,
upon further Au doping for x = 0.5 the magnetic order no
longer appears off the a∗ axis, but incommensurate order
is observed along a∗ with Q = (0.59 0 0) [14] which is then
roughly constant up to x = 1 (Q = (0.56 0 0)). Since these
experiments on x = 0.5 and 1 were performed long before
the present ones on x = 0.2 and 0.3, we did not take scans
off the a∗ axis and therefore cannot exclude some intensity
at the positions out in the a∗c∗ plane. On the other hand,
powder measurements for x = 0.5 [19] do suggest that we
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Fig. 4. Specific heat for x = 0.2, 0.3, 0.5, 1.0 as a function of
T/TN . The lines correspond to a mean-field transition with
the same entropy contribution below and above TN . The inset
displays the specific heat for x = 0.2.

did not miss an appreciable amount of magnetic intensity
in our investigations on the single crystals. Figure 2 sum-
marizes the results obtained on the different CeCu6−xAux
single crystals. The rod-like feature in S(q, ω = 0.1 meV)
of the alloy at the critical concentration xc = 0.1 and the
positions of the magnetic Bragg peaks are displayed in the
reciprocal ac plane.

Figure 3 shows the intensity of selected magnetic Bragg
peaks as a function of temperature, one for each of the
four investigated concentrations x = 0.2, 0.3, 0.5 and 1.0.
The peak intensity as normalized to the adjacent nuclear
reflection, (2 0 0), is seen to increase by a factor of 9
between x = 0.2 and 0.3, while it increases more slowly
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Fig. 5. Resistivity of CeCu5.8Au0.2 and CeCu5.7Au0.3 along the three crystallographic axes. Along the a and c direction a sharp
rise of the resistivity is observed at the Néel temperature (TN ≈ 0.25 K for x = 0.2 and TN ≈ 0.51 K for x = 0.3).

between x = 0.5 and 1. It should be mentioned that the
intensity of the (2 0 0) nuclear peak depends somewhat
on the atomic positions inside the unit cell and is affected
by extinction since (2 0 0) is a strong peak. Therefore the
normalized intensity of the magnetic peaks is only a rough
measure of the size of the ordered magnetic moment. Be-
cause of the change of the magnetic structure and also of
the scattering geometries between x = 0.3 and 0.5, the
intensities of Figures 3a and 3b cannot be compared di-
rectly. Assuming a sinusoidal modulation of the moments
aligned along c we estimate an ordered magnetic moment
µ of 0.1 . . . 0.15µB/Ce atom for x = 0.2. Under the same
assumptions the ordered moment for x = 0.3 is a factor
of 3 larger. For x = 0.5 the estimate of µ ≈ 1µB/Ce atom
had been given previously [14]. Figure 3b shows that µ
increases only by small percentage for x = 1. These values
should be compared to 2.54µB for free Ce3+ moments.
For CeCu6 the magnetization measured along the c axis
yields a magnetic moment of 1.5µB/Ce-atom in an ap-
plied field of 40 T [20]. Theoretically, the ordered magnetic
moment in a weakly interacting itinerant-electron model

should depend on the Néel temperatures as µ ∝ T
3/4
N [21]

which gives a slower increase of the moment than experi-
mentally observed.

Although the ordering wave vector for x = 0.5 and 1.0
as taken from (h 0 0) scans does not change very much, the
intensity of several reflections in the a∗b∗ plane off the a∗

axis, observed for x = 1.0 but not for x = 0.5, is clearly
not compatible with a simple sine-modulated structure.
For x = 1 a complex magnetic (B, T ) phase diagram
has been observed, with the magnetic structure found in
zero applied magnetic field B giving way to a different
structure in B > 0 via a first-order phase transition [22].

Neutron scattering studies in magnetic fields are underway
to examine the magnetic structure in these phases.

3.2 Specific-heat anomaly at the ordering temperature

The specific heat C of the CeCu6−xAux single crys-
tals has been measured as reported in detail elsewhere
[9,10,22]. Here we focus on the anomaly at TN . Figure 4
shows C plotted versus reduced temperature T/TN . As
noted before [9] the specific heat looks almost mean-field
like for x = 0.3 and 0.5. On the other hand it is more
rounded for x = 0.2 and more peaked for x = 1.0. There
is a considerable contribution arising from short-range or-
dering above TN as evidenced from the tail of the anomaly.

The strong increase of the specific-heat anomaly with
x qualitatively underscores the increase of the ordered
moment already inferred from the neutron scattering. A
more detailed analysis must await a microscopic model of
the alloying effect in CeCu6−xAux (see also Sect. 4). In
a crude analysis, we replace the observed anomaly at TN
by a mean-field discontinuity∆C under the usual entropy-
conserving construction (cf. thin lines in Fig. 4). For an or-
dered spin moment of s = 1/2 one expects ∆CMF = 1.5R
[23]. We find for x = 0.2, 0.3, 0.5 and 1 the following
values r = ∆C/∆CMF , r = 0.016, 0.04, 0.2, and 0.55, re-
spectively. One should keep in mind that even for x = 1
a considerable Kondo effect is operative indicated by a
sizable γ = 0.64 J/molK2 at 0.1 K in zero magnetic
field [22].

3.3 Resistivity

Figure 5 gives an overview over the T dependence of the
electrical resistivity ρ for x = 0.2 and 0.3. For both con-



H. von Löhneysen et al.: Magnetic order and transport in the heavy-fermion system CeCu6−xAux 451

0 1 2 3
 T (K)

20

30

40

50

60

70

ρ(
µΩ

cm
)

I || a
I || b

CeCu 5.5Au0.5

0 1 2
 T (K)

85

90

95ρ(
µΩ

cm
)

I || c CeCu 5Au

105

110

115

120

125

Fig. 6. Resistivity of CeCu5.5Au0.5 and CeCu5Au1. Along the a-axis a sharp rise of the resistivity is observed at the Néel
temperature for x = 0.5 (TN ≈ 1.0 K). For x = 1 (TN ≈ 2.3 K) the resistivity decreases with temperature both in a and b
direction, however the decrease along a seems to be smaller.

centrations, ρ(T ) shows a kink at the Néel temperature TN
and increases below TN for current direction I parallel to
a and c while ρb(T ) for I ‖ b continues to decrease towards
lower temperatures. For both concentrations ρa(T ) has a
negative temperature coefficient throughout the T range
investigated, and exhibits the largest magnitude compared
to ρb and ρc below TN .

These findings suggest that below the Néel tempera-
ture the quasiparticle-scattering properties are changed.
This can happen in several different ways as will be dis-
cussed in Section 4. We mention that resistivity data for
x = 0.15 where only ρa and ρb were measured [24] fit
nicely into this picture, i.e. an increase of ρa(T ) below TN
and a decrease of ρb(T ) is observed.

Figure 6 shows ρ(T ) for x = 0.5 and 1. While, for
x = 0.5, ρa(T ) again exhibits a (weak) kink at TN and
increases faster towards low T , ρb and ρc reveal a rather
sharp maximum at TN . Again, these features can be ex-
plained by referring to the magnetic structure. For this
concentration, the magnetic ordering vector lies on the a∗

axis hence only this direction shows an increase of ρ(T )
below TN .

For x = 1 (Fig. 6) we observe a maximum of ρ(T )
at TN both for I ‖ a and I ‖ b. However, the decrease
of ρa(T ) below TN is slower than that of ρb(T ). We re-
call that even for x = 1 a large residual linear specific-
heat coefficient is observed in the magnetically ordered
state [22].

As a final result, we plot in Figure 7 the residual re-
sistivity ρ0 for the three current directions as a function
of Au concentration x. As already apparent from the data
of Figures 5 and 6, ρ0,a is largest throughout the concen-
tration range. The maximum of ρ0,a at x ≈ 0.5 reflects

the large structural disorder although the system is mag-
netically homogeneous as evidenced from the resolution-
limited Bragg peaks.

4 Interplay of magnetic order and transport

As a theoretical model for CeCu6−xAux we envisage a
conduction band of heavy quasiparticles generated by the
Kondo effect at the Ce ions. Their effective mass m and
Fermi energy εF is controlled by the Kondo temperature
TK , i.e. m ∼ (TF /TK)mband, εF ∼ TK . Here TF and
mband are the Fermi temperature and the bare mass of
the weakly interacting conduction electrons. The substi-
tution of Au for Cu in CeCu6 is known to take place at a
special Cu site next to each of the four Ce atoms in the
unit cell (see Sect. 1). The overall effect of alloying on the
heavy-fermion liquid is to lower the Kondo temperature
mildly (up to a factor ∼ 2 for x = 1), as inferred from
the γ coefficient of the specific heat and the quasi-elastic
linewidth in neutron scattering. It is not known at present
whether this must be interpreted as a lowering of the char-
acteristic energy of the coherent state of the Kondo lat-
tice forming at low temperatures, caused by the lattice
distortions and the associated (probable) lowering of the
conduction-electron density of states at the Fermi energy
and the weakening of the f -d hybridization, or as a local
lowering of the Kondo temperature at those Ce ions next
to an Au atom. In any case it will be useful to distinguish
the single-ion regime above the so-called coherence tem-
perature T0, defined by the maximum in the resistivity
as a function of temperature, from the lattice-coherent
state below T0.
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The most prominent consequence of coherence is that
for a regular lattice of Kondo ions, i.e. in the stoichio-
metric compounds CeCu6 and CeCu5Au, the resistivity
should tend to zero in the limit T → 0. This is seen in
Figure 7 where the residual resistivity is plotted versus
Au concentration x. The fact that for x = 1 the resid-
ual resistivity ρ0 is not quite zero, but assumes minimum
values of 30−40µΩcm, is likely due to remaining lattice
defects. The data points are roughly consistent with the
law ρ0 ∼ x(1− x). The maximum values for ρ0 are of the
order of the unitarity limit, i.e. correspond to a mean free
path of the order of the Fermi wavelength. This suggests
that the Au impurities act as strong scatterers, probably
because they change the Kondo state of the nearby Ce
ion in a subtle way. We recall that the Kondo tempera-
ture in the doped systems is only a factor two or so smaller
than that of CeCu6, so we have no indication for a dras-
tic suppression of the Kondo effect by the Au impurities.
Nonetheless, the additional potential scattering caused by
the Au impurities may change the f -level occupation on
the Ce ions sufficiently to induce a relevant deviation of
the Kondo phase shift from the value π/2. In any case, it
is reasonable to assume that the observed strong increase
of ρ0 with Au concentration is related to the Kondo effect
in the Ce ions.

This suggests the following scenario: at any finite tem-
perature not too far below TK the magnetic moments at
the Ce ions are not completely quenched by the Kondo
effect. The residual moments interact and may form an
ordered magnetic state. Even in the fully developed mag-
netically ordered state at T = 0 the local magnetic field
created by the ordered spin configuration may be suffi-
ciently small such that a reduced Kondo effect remains.
For a range of values of TK & TN the Kondo effect and
magnetic order may thus coexist. An alternative scenario
would be that of a spin density wave of the heavy quasi-
particles. While the latter model may have difficulties to
explain the rather large magnetic moments experimentally

observed at x = 0.5 and x = 1.0, it can not be ruled out
at present.

We consider now the effect of magnetic order on the
resistivity. Within the first scenario the onset of magnetic
order would be associated with a partial suppression of
the Kondo effect by the local magnetic field generated by
the ordered moments. The effect of a magnetic field H on
the resistivity ρK of a single S = 1/2 Kondo ion at T = 0
can be exactly expressed in terms of the Kondo impurity
magnetization MK as [25]

ρK = ρK(0) cos2

(
πMK

gµB

)
· (1)

We expect this relation to hold approximately at finite
temperatures T0 . T . TK as well. Taking the magneti-
zation to be proportional to the ordered moment MQ(T ),
we obtain the following estimate of a first effect of the
magnetic order on the resistivity of the Kondo alloys in
the single-ion regime

ρ(T,MQ(T )) = ρ(T,MQ = 0) cos2

(
αMK

gµB

)
(2)

where α is a coefficient of order unity. This will tend
to reduce all components of the resistivity tensor equally
strongly. The initial (isotropic) decrease below TN accord-
ing to (2),

δρ(1)

ρ0
≈ −

1

2
α2

(
MQ(T )

gµB

)2

, (3)

is proportional to M2
Q(T ) and hence linear in (TN − T )

near TN . For the experimentally determined temperature
dependence of M2

Q(T ) see Figure 3.
Secondly, the periodically modulated static spin struc-

ture in the magnetically ordered state will give rise to a
change in the conduction-electron band structure. This is
independent of whether the magnetic order is of an itin-
erant or a localized nature. Roughly speaking, the addi-
tional periodic structure will give rise to enhanced back-
scattering for quasiparticles moving in the direction of the
magnetic wave vector Q, hence increasing the resistivity
components along Q. This is born out by the data of
Figure 5, which indeed show an increase of ρ along the
a and c directions, in accordance with the direction of
Q ≈ (0.625 0 0.275) for x = 0.2 while ρ increases only in
the a direction for x = 0.5 with Q ≈ (0.59 0 0).

We will sketch a model calculation of this effect in the
following. The static magnetization associated with the
magnetic order acts like an additional (spin-dependent)
periodic potential, thus changing the band structure. As
this change is small it can be calculated in degenerate
perturbation theory. The band structure affects both the
quasiparticle energy εk and the transport relaxation time
τk. For a quantitative theory of this effect a detailed
knowledge of the band structure, the magnetic ordering,
the interactions of the staggered moment with the elec-
trons and the momentum dependence of τk is necessary.
The qualitative effect, however, can easily be calculated,
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e.g. for a spherical Fermi surface assuming isotropic scat-
tering. The staggered magnetization MQ(T ) induces a
spin-dependent periodic potential of wave vector Q. It is
now important to distinguish three different scenarios, de-
pending on whether the ordering wave vector Q is larger,
smaller or of the order of the size of the Fermi sphere
with radius kF . For Q � 2kF the resistivity is practi-
cally not affected by the short-range periodic potential.
For Q < 2kF belts of band gaps are opened at the Fermi
surface for εk ≈ εk±Q. The magnitude of those energy
gaps is proportional to MQ(T ).

The model is described by the following Hamiltonian

H0 =
∑
k,σ

εkc
†
kσckσ +∆

∑
k

(
c†Q/2+k↓c−Q/2+k↑ + h.c.

)
.

(4)

Q is the ordering wave vector, εk is the energy spectrum
in the absence of the magnetic order. We have assumed
a sinusoidal variation of the magnetization directed along
the spin quantization axis of the electrons. ∆ measures
the strength of the effective potential and is proportional
to the staggered magnetization MQ(T ) measured in neu-
tron scattering. The energy eigenvalues of H0 are given by
(~ = 1)

E±k =
εQ/2+k + εQ/2−k

2
±

√(
εQ/2+k − εQ/2−k

2

)2

+∆2

= ∆ε0 + k2
‖/2m+ k2

⊥/2m±
√

(v0k‖)2 +∆2. (5)

We will use a quadratic band structure εk = k2/2m
throughout the paper, as the complicated band structure
of CeCu6 is not know sufficiently well [26]. The qualita-
tive conclusions drawn from this model will nonetheless be
correct, although we expect that quantitative changes will
result from a realistic band structure. As we are consider-
ing a heavy-fermion system we expect m to be very large,
with the Fermi energy k2

F /2m ∼ TK (∼ 6 K for CeCu6)
taking a rather low value. The variables k‖ and k⊥ are the
components of the momentum parallel and perpendicular
to Q and k‖ is confined to the first (magnetic) Brillouin
zone, −Q/2 ≤ k‖ ≤ Q/2. v0 = Q/2m is the velocity at

Q/2 parallel to Q and ∆ε0 = (Q/2)2/2m− µ is negative
(positive) for Q < 2kF (Q > 2kF ), where µ ≡ k2

F /2m is
the chemical potential.

In the following we will investigate within a simple
Boltzmann transport picture the interplay of impurity
scattering and the change of the band structure due to
the static magnetic order. We will not consider inelastic
processes like the scattering of electrons from magnetic
fluctuations, which are probably negligible at some dis-
tance from the transition and at the low temperatures
considered. The change of the band structure affects both
the scattering rate of the electrons and the velocities of the
fermions at the Fermi surface. The change of the chemical
potential due to ∆ can be neglected as it is proportional to
(∆/εF )2 ln[εF /(∆ + ∆ε0)] and therefore small compared
to the other effects discussed below.

The transport scattering rate 1/τk near the Fermi sur-
face due to impurity scattering is given by

1

τk′
=
∑
i=±

∫
d2k⊥dk‖δ(E

i
k)(1− cosφkk′ )Wkk′ (6)

where φkk′ is the angle between v±k = ∂E±k /∂k and

v±k′ . For simplicity we consider only s-wave scattering
(Wkk′ = const), for which the cosine drops out due to
cosφ + cos(π − φ) = 0. The integration on k‖ yields a
constant value for 0 ≤ k‖ ≤ kmax‖ where kmax‖ = Q/2

for i = − and kmax‖ < Q/2 for i = +, in the case that

Q < 2kF . (In the opposite case Q > 2kF the contribu-
tions stem from kmax‖ ≤ k‖ ≤ Q/2 and i = − and E+

k is

not occupied.) From the condition E±k (k⊥ = 0, k‖) = 0 we

obtain kmax‖ =
√
k2
F + (Q/2)2 − 2

√
k2
F (Q/2)2 +m2∆2 ≈√

(kF − (Q/2))2 −m2∆2/(kF (Q/2)) with E+
k (0, kmax‖ ) =

0 for Q < 2kF and E−k (0, kmax‖ ) = 0 for Q > 2kF . For

Q > 2kF only E−k gives a contribution to the scatter-
ing rate, 1/τk ∝ Q/2 − kmax‖ . For Q < 2kF we obtain

from the lower band always the same contribution ∝ Q/2
while from the upper band one has to add a contribution
∝ kmax‖ . Combining this we find that the relative change of

the scattering rate due to the opening of a gap is given by

δ

(
1

τk

)
/

(
1

τk

)
=

1

kF

Q
2
− kF ∓Re

√(
Q

2
− kF

)2

−
m2∆2

kFQ/2

 (7)

where the + (−) is valid for Q < 2kF (Q > 2kF ).
Re denotes the real part, taking into account that the
band gives no contribution if it is not occupied. For
Q < 2kF the scattering rate is reduced by 1−Q/(2kF ) for
∆ < |∆ε0|, and by ∆2/(8εF (Q/2)2/(2m))Q/(2kF −Q) for
∆ > |∆ε0|. For Q > 2kF the scattering rates are increased
by the same amount. As the change of the scattering rate
is approximately of the order of (∆/εF )2Q/(Q−2kF ) large
effects are expected only for Q ≈ 2kF .

The conductivity due to impurity scattering is given by

σαβ = −e2
∑
i=±

∫
viαv

i
βf
′(Eik)τkd

3k/(2π)3 (8)

≈ e2τ(∆)
∑
i=±

∫
∂2Eik
∂kα∂kβ

f(Eik)d3k/(2π)3 (9)

where vi = ∂Eik/∂k is the velocity of the quasiparticles,
f(εk) is the Fermi function and τk the (elastic) transport
scattering time of the quasiparticles.

Let us first consider the components of σ perpendic-
ular to Q, σ⊥. Within the model considered, the per-
pendicular components of the inverse effective mass ten-
sor ∂2Eik/∂kα∂kβ = 1/m are unchanged by the mag-
netic order. The conductivity is given by the Drude result
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σ⊥ = e2nτ/m with, however, the proper relaxation time
τ changed by the gap according to (7). This yields a rela-
tive change of the resistivity ρ⊥ induced by the magnetic
order, which is in leading order in ∆

δρ
(2)
⊥

ρ0
= −

1

4

k2
F

Q(kF −Q/2)

(
∆

εF

)2

. (10)

This estimate holds provided that |kF −Q/2| > m∆/kF .
It is seen that the conductivity is increased (decreased)
for Q < 2kF (Q > 2kF ) by an amount proportional to the
squared amplitude of the magnetic order MQ(T ). Except
for small (kF −Q/2) the effect is of order (TN/TK)2.

The conductivity component parallel to Q is mainly
affected by the change in the effective mass tensor

∂2E±k
∂k2
‖

=
1

m
±

v2
0∆

2

((v0k‖)2 +∆2)3/2
· (11)

Performing the integration over k⊥ in (9) one finds

∆σ
(3)
‖ = −e2τmv2

0∆
2

∫
dk‖

(2π)2

T ln[(1 + eX+)/(1 + eX−)]

[(v0k‖)2 +∆2]3/2

(12)

where X± = −E∓(k‖,k⊥ = 0)/T . For Q . 2kF (∆ε0 . 0)
and ∆� |∆ε0| or else ∆� T , one finds for the change in
resistivity

δρ
(3)
‖

ρ0
=

(
1−

3π

2

v0

vF

∆

εF
f(∆ε0)

)−1

≈
3π

2

v0

vF

∆

εF
f(∆ε0).

(13)

This contribution has to be added to the one induced by

the change in the relaxation rate, δρ
(2)
‖ /ρ0 = δρ

(2)
⊥ /ρ0

which was found to be quadratic in ∆, and hence is
smaller.

On top of the contributions (10, 13) we have to add the
contribution found in (3), which is in principle comparable
in magnitude to (10).

The theoretical estimates derived above allow to inter-
pret the data shown in Figures 5 and 6 in a satisfactory
way. For all Au concentrations shown, the resistivity in-
creases below TN with decreasing temperature relative to
the (extrapolated) background only for those directions
of current flow with a finite projection onto the ordering
vector Q (the effect being the larger, the larger the pro-
jection). This is in accordance with our result that only
for those directions the dominant term linear in ∆, given
by (13), contributes. It remains to explain the tempera-
ture dependence of this effect, which appears to be rather
more linear than square root. However, although (13) ap-
pears to give a square-root dependence on (TN−T ) due to
the linearity in ∆ ∝MQ(T ), a numerical evaluation shows
(Fig. 8) that for Q sufficiently close to 2kF and TN not too
small compared to εF the temperature dependence of the
Fermi function f(∆ε0) in the relevant temperature regime
tends to straighten the square-root towards linear behav-
ior over a wide range in temperature. This would indicate

0.0 0.1 0.2
T/εF

1.0 1.0

1.0 1.0

1.01 1.0

1.01 1.0

1.02 1.0

1.02 1.0

1.02 1.01

1.02 1.02

 ρ
/ρ

0

Fig. 8. Increase of the resistivity ρ
(3)

‖ due to band structure

effects for the model described in equation (4) for TN = 0.2εF .
The gap ∆(T ) is assumed to be proportional to MQ(T ) derived

from Figure 3: ∆(T )/εF = 0.15(TN/εF )
√

1− (T/TN)2. The
result is given for various ordering vectors from top to bottom:
Q/2 = 0.8kF , 0.9kF , 0.95kF , kF , 1.05kF , 1.1kF . For clarity we
have plotted the curves with a constant offset. The circles are
the result of a numerical evaluation of (9), the solid lines show
our approximating formula (13).

that for both x = 0.2, 0.3 and x = 0.5, 1.0, Q is close to
spanning the distance between sections of the Fermi sur-
face with opposite Fermi velocities (Q ∼ 1.8kF − 2kF ). A
fit of the results for δρ(3) (13) to the data is not easy due
to the unknown background and the additional isotropic
contribution from ρ(1) and ρ(2). We find roughly for the
ratio ∆/εF ≈ 0.1(TN/TK)(MQ(T )/MQ(0)).

Let us now turn to the components of ρ perpendicular
to Q. In this case only the contributions δρ(1) and δρ(2)

survive, which are both quadratic in MQ(T ). Of these,

δρ(1) is probably the dominant one, considering the small
value of ∆/εF . Using the values of the low temperature
staggered magnetization estimated from the neutron scat-
tering data, MQ(0)/µB ≈ 0.1, 0.3 and 1 for x = 0.2, 0.3
and 1.0, we find a drop in resistivity from TN to T = 0 of
relative magnitude δρ(1)(T = 0)/ρ(TN) ∼ 0.001, 0.01, 0.1
taking α = 1 and g = 2µsat/µB ≈ 2.8 in (3). This com-
pares well with the experimental data for which an ad-
ditional drop of ρb towards lower temperatures, on top
of the decrease caused by the formation of coherence, is
not noticeable for x = 0.2 and 0.3, whereas for x = 0.5
the relative change is roughly δρ/ρ ∼ 0.1. For the highest
concentration x = 1, the predicted drop δρ(1)/ρ ∼ 0.15 ac-
counts for part of the total drop, the main part being due
to coherence effects. For x = 0.2, the resistivity ρb is seen
to rise for decreasing temperature with respect to an ex-
trapolated background, probably due to admixtures from
components parallel to Q. Another possibility is that Q
may be slightly larger than 2kF and ρ(2) taken from (10)
is positive. However, this is difficult to decide as long as
the band structure is not known sufficiently well and the
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temperature dependence in the absence of magnetic order
is not fully understood.

In a more general view, the resistivity data show clear
signs of the existence of three characteristic temperatures,
the Kondo temperature TK (∼ Fermi energy of the heavy
quasiparticles), the coherence temperature T0 and the
Néel temperature TN . For temperatures above T0, the re-
sistivity components show the negative temperature coeffi-
cient characteristic of the single-ion Kondo effect, whereas
for T less than T0 the temperature coefficient changes
to positive, even though in the disordered samples (for
0 < x < 1) the resistivity has a finite zero-temperature
limit. Superposed on this background is an abruptly ap-
pearing change for T < TN caused by the growing mag-
netic order as discussed above. Here one has to keep in
mind that the coherence temperature by definition can
not be uniquely defined, as it is meant to characterize a
smooth crossover rather than a phase transition. The po-
sitions of the maxima of ρ, which are significant for the
onset of coherence, are seen to vary broadly for the dif-
ferent resistivity components, reflecting the complex band
structure of the system. Nonetheless, the main features of
the resistivity fit well into this picture. The data seem to
indicate that for x ≥ 0.5 the system is in the regime where
T0 < TN , while for x ≤ 0.3 we observe T0 & TN . This may
in part be responsible (beside the much smaller magne-
tization for x ≤ 0.3 suppressing all quadratic effects) for
the fact that the decrease of resistivity perpendicular to
Q is much larger for the higher Au concentrations.

5 Conclusions

The neutron-scattering data of the heavy-fermion alloy
CeCu6−xAux reported here show that a complex mag-
netic structure appears at low temperatures. As discussed
in previous publications, near the quantum-critical point
at x ≈ 0.1 two-dimensional fluctuations are found to
dominate. In the magnetically ordered phase for x > 0.1,
considered in this paper, incommensurate order emerges,
characterized by an ordering wave vector in the a∗c∗

plane for x = 0.2 and 0.3, changing to a different wave
vector for x = 0.5 and x = 1. The appearance of magnetic
order has a profound effect on the electrical-resistivity
components. Broadly speaking, the resistivity tends
to increase with staggered magnetization for current
directions along the wave vector Q, while it tends to
decrease for all other directions. We have shown that
a pronounced increase of the resistivity proportional to
the staggered moment is indeed expected for current
parallel to Q. This effect is caused by the change in
the band structure induced by the scattering of the
heavy quasiparticles off the periodically varying mag-
netization. In addition we identified two contributions
in the resistivity proportional to the staggered moment
squared, the first one induced by the partial quenching
of the Kondo effect through the staggered magnetic field
and therefore negative, and the second one following

from the change of the momentum relaxation rate, with
positive (negative) sign for Q > 2kF (Q < 2kF ). We found
indications that Q is close to 2kF , where kF is a Fermi
vector of the band structure in the direction of Q.

In this scenario we obtain a satisfactory picture of the
interplay of magnetic order and transport in CeCu6−xAux
for 0.2 ≤ x ≤ 1. A more detailed understanding requires
knowledge of the electronic band structure of CeCu6, as
well as a microscopic theory of the Kondo lattice and the
heavy-fermion states, which is not yet available.
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